
A Framework for the Study of Preference Incorporation in
Multiobjective Evolutionary Algorithms

Raluca Iordache
Dept. of Computer Science
University POLITEHNICA

Bucharest, Romania
riordache@outlook.com

Serban Iordache
SCOOP Software GmbH

Cologne, Germany
siordache@acm.org

Florica Moldoveanu
Dept. of Computer Science
University POLITEHNICA

Bucharest, Romania
florica.moldoveanu@cs.pub.ro

ABSTRACT
We present a formal framework for the study of user pref-
erence incorporation into multiobjective evolutionary algo-
rithms. This framework can accommodate virtually any
preference model, including those that violate the indepen-
dence of irrelevant alternatives. We also introduce the Preferanto
notation, which permits the specification of a large variety
of preference models. A number of properties and indica-
tors are proposed for characterizing preference models. We
report the results of a case study experiment assessing the
impact of incorporating different preference models into an
NSGA-II algorithm.

Categories and Subject Descriptors
Computing methodologies [Artificial intelligence]: Search
methodologies—Heuristic function construction

General Terms
Algorithms

Keywords
preference incorporation, many objective optimization

1. INTRODUCTION
A multiobjective optimization problem (MOP) involves

several objectives to be achieved. In most cases, these ob-
jectives are conflicting and there is no solution that simul-
taneously optimizes all of them. Instead, there exists a set
of so-called Pareto-optimal solutions, which are not domi-
nated by any other feasible solution. Therefore, multiob-
jective optimizers produce approximation sets consisting of
solutions close to the Pareto optimal front. Choosing the
best solution from a set of feasible alternatives is not pos-
sible without additional preference information, which has
to be provided by a decision maker. Depending on the mo-
ment when these preferences are articulated, multiobjective

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO’14, July 12–16, 2014, Vancouver, BC, Canada.
Copyright 2014 ACM 978-1-4503-2662-9/14/07 ...$15.00.
http://dx.doi.org/10.1145/2576768.2598380.

optimization methods are based on a priori, a posteriori or
interactive approaches [10].

A priori methods involve expressing user preferences be-
fore performing the search. Most of these methods are based
on aggregating the multiple objectives into a single objec-
tive. Typical examples include the weighted sum or the lexi-
cographic approach. A priori approaches are very appealing,
because they transform the multiple optimization problem
into a single objective one. However, for real-world complex
problems it is in general very difficult or even impossible to
aggregate the multiple objectives in a way that accurately
reflects the user’s preferences.

Interactive methods involve the progressive articulation
of preferences. At each generation, the decision makers are
asked to provide preference information that will be used
to guide the subsequent search. These methods take into
account that usually, the decision makers are initially not
fully aware of their preferences. However, they gain insight
gradually during the solution process, by being exposed to
different sets of candidate solutions.

A posteriori methods are concerned with constructing a
set of alternative solutions from which the decision makers
will choose the one they prefer. The goal of these methods
is to provide a set of alternatives that is relatively small,
but nonetheless contains all solutions that are most likely
of interest to the decision maker. In most cases, this means
offering a set of solutions that are well distributed on the
Pareto front.

Multiobjective evolutionary algorithms (MOEA) are cur-
rently the preferred way to tackle multioptimization prob-
lems that are too complex to be solved with traditional oper-
ations research techniques. Most research on MOEA focuses
on a posteriori methods, and, in particular, on efficient ways
of constructing a good set of alternative solutions from which
the decision maker will choose the preferred one. In many
approaches, the selection pressure is provided only by the
Pareto dominance. Such approaches are usually not suit-
able for many-objective problems, that is, problems involv-
ing four or more objectives [11]. When the number of ob-
jectives increases, the selection pressure becomes too weak,
because the number of non-dominated solutions grows expo-
nentially. The number of solutions needed to approximate
the Pareto front also grows exponentially, which makes it
very difficult for the decision maker to choose the best al-
ternative.1

1There are, however, a few approaches able to deal with
many-objective problems. See, for example, [2].

In the recent years, a number of approaches for incor-
porating user preference information in MOEA have been
proposed in order to overcome the above mentioned prob-
lems [6, 4, 13]. User preferences refine the partial order in-
duced by the Pareto dominance, focusing the search on the
region of interest to the decision maker. Comparing different
preference incorporation approaches and deciding which one
is the most suitable for a particular problem is a very diffi-
cult task. In this paper, we introduce a framework for the
study of preference incorporation in MOEA. Our framework
can accommodate virtually any preference scheme, includ-
ing those that violate the independence of irrelevant alter-
natives. In order to be able to analyze a large variety of
preference models, we also introduce the Preferanto nota-
tion, which is a simple and intuitive language for specifying
complex user preferences. A number of properties and indi-
cators are proposed for characterizing preference models. As
a proof of concept, we conduct a case study experiment using
our framework, in order to assess the impact of incorporat-
ing different preference models into an NSGA-II algorithm.

The remaining of this paper is organized as follows. In
Section 2 we introduce our preference incorporation frame-
work by formalizing concepts such as preference model and
multiobjective problem with preferences, we describe several
properties that may characterize a preference model and we
propose a number of preference indicators. In Section 3
we present the Preferanto notation and the methodology
of transforming a Preferanto specification into a preference
model. In Section 4 we describe the approach used to incor-
porate preference information into an NSGA-II algorithm,
the design of our experiments and their outcome. The last
section concludes the paper and outlines future research di-
rections.

2. THE PREFERENCE INCORPORATION
FRAMEWORK

In this section, we introduce a formal framework for in-
corporating preferences into MOEA. Before describing the
proposed framework, we briefly review some of the basic con-
cepts and terminology related to multiobjective problems
and MOEA.

2.1 Basic concepts

Definition 1. Given a decision space X ⊆ Rn, an ob-
jective space Z ⊆ Rk and a vector of k objective func-
tions f = (f1, ..., fk) : X → Z, the general multiobjec-
tive problem (general MOP) [7] is defined as minimizing
f(x) = (f1(x), ..., fk(x)) subject to:
gi(x) ≤ 0, i = 1, ...,m
hj(x) = 0, j = 1, ..., p

where gi, hj : X → R are the constraint functions of the
problem.

Usually, there is no decision vector x that minimizes all
the objective functions. Therefore, the solution of a MOP is
given by a set of non-dominated decision vectors. A solution
x ∈ X is said to be Pareto optimal with respect to X if f(x)
is not dominated by any objective vector z ∈ Z. The set of
all Pareto optimal solutions constitutes the Pareto optimal
set, while its image in the objective space constitutes the
Pareto optimal front. These notions can be formalized as
follows:

• An objective vector z ∈ Z dominates an objective vector
z′ ∈ Z (denoted z ≺ z′) iff:
zi ≤ z′i, ∀i ∈ {1, ..., k} ∧ ∃i ∈ {1, ..., k} such that zi < z′i.

• An objective vector z ∈ Z weakly dominates an objective
vector z′ ∈ Z (denoted z � z′) iff:
zi ≤ z′i, ∀i ∈ {1, ..., k}.

• The Pareto optimal set P∗ is defined as:
P∗ = {x ∈ X | @x′ ∈ X, such that f(x′) ≺ f(x)}

• The Pareto optimal front PF∗ is defined as:
PF∗ = {f(x) | x ∈ P∗}

2.2 Preference incorporation
In order to give multiobjective evolutionary algorithms

(MOEA) the possibility to focus the search on the region of
interest, we need to incorporate user preferences in the defi-
nition of the MOP. Throughout this paper, we use the term
multiobjective problem with preferences (MOPP) to denote
a MOP enhanced with preference information. Each prefer-
ence incorporation scheme involves a preference model, for
which we propose the following definition:

Definition 2. A function P : 2Z → 2Z×Z is called a pref-
erence model over the objective space Z, iff ∀A ⊆ Z, P(A)
is a strict partial order on A.

Given a set A ⊆ Z and two objective vectors u, v ∈ A, we
say that the vector u preferentially dominates the vector v
with respect to A (denoted u≺

A
· v), if (u, v) ∈P(A).

Definition 3. Given a preference model P over an ob-
jective space Z and a set A ⊆ Z, the preferential front of
A (denoted F∗A) is defined as the set of preferentially non-
dominated vectors with respect to A:

F∗A = {u ∈ A | @v ∈ A, such that v≺
A
· u}

A preference model can be attached to a MOP only if it
does not violate the Pareto dominance relation imposed by
its objective functions.

Definition 4. A preference model P is Pareto compliant
with a given MOP iff
∀A ⊆ Z, ∀u, v ∈ A,u≺

A
· v⇒ v ⊀ u.

We propose the following definition, which describes a
multiobjective problem with preferences (MOPP) as a MOP
together with a Pareto compliant preference model.

Definition 5. Given a decision space X ⊆ Rn, an ob-
jective space Z ⊆ Rk, a vector of k objective functions
f = (f1, ..., fk) : X → Z and a Pareto compliant preference
model P over the objective space Z, the general multiobjec-
tive problem with preferences (general MOPP) is defined as
minimizing f(x) = (f1(x), ..., fk(x)), with f(x) ∈ F∗Z , subject
to:
gi(x) ≤ 0, i = 1, ...,m
hj(x) = 0, j = 1, ..., p

where F∗Z is the preferential front of the objective space
Z and gi, hj : X → R are the constraint functions of the
problem.

It can be noticed that the above definition could be rewrit-
ten without referring to a preferential model, because F∗Z
only involves the preferential dominance relation with re-
spect to Z. This means that a partial order on Z would be
sufficient to define the MOPP. The reason for formulating
the definition in terms of a preferential model is our interest
in evolutionary algorithms for the MOPP. Such algorithms
deal with populations of candidate solutions at each gener-
ation step. A preference model is useful in evaluating the
fitness of the individuals in a population. It also helps as-
sessing the performance of different evolutionary algorithms
for the MOPP.

• A preference model P is Pareto complete with respect to
a given MOP iff:
∀A ⊆ Z, ∀u, v ∈ A,u ≺ v⇒ u≺

A
· v.

• A preference model P is called total with respect to a
given MOP iff:
∀A ⊆ Z,P(A) is a strict total order on A.

• A preference model P is weakly consistent with respect
to a given MOP iff:
∀A,B ⊆ Z, ∀u, v ∈ A ∩B,u≺

A
· v⇒ v ⊀

B
· u.

• A preference model P is strongly consistent with respect
to a given MOP iff:
∀A,B ⊆ Z, ∀u, v ∈ A ∩B,u≺

A
· v⇒ u≺

B
· v.

Non-consistent preferences violate the independence of ir-
relevant alternatives (IIA). The concept of IIA has been in-
troduced by Arrow [1], and is one of the criteria considered
in his Impossibility theorem. The violation of the IIA is also
known as the rank reversal phenomenon. We can illustrate
the problem addressed by the IIA considering the following
scenario:

Faced with two alternatives A and B, a person prefers A
to B. After introducing a third alternative C, the person
prefers B to A.

The person in the above scenario expresses preferences that
do not satisfy the IIA criterion.

To our best knowledge, non-consistent preferences have
not been studied in the context of MOEA, although there are
several multicriteria decision making (MCDM) approaches
affected by rank reversal (see [18] for an illustration of the
rank reversal phenomenon in 5 popular MCDM approaches).
The legitimacy of rank reversal in MCDM is a controversial
issue [14] and, obviously, having to deal with rank reversal
is not desirable. However, in many real world situations, it
may be impossible to avoid this phenomenon. Experimental
evidence indicates that the IIA is often violated by decision
makers [16]. Therefore, it is important that our framework
also accommodates non-consistent preferences.

2.3 Preference indicators
In the previous subsection we have defined a number of

possible traits of a preference model (Pareto completeness,
totalness, consistency). A more accurate characterization
can be obtained by defining scalar measures associated with
a preference model.

Definition 6. A preference indicator is a function
Ipref : P → R

that associates numerical values to preference models.

The preference indicators we propose in this subsection
are based on the properties of the partially ordered sets
(posets) obtained by applying a preference model to a given
set. Therefore, it is helpful to have corresponding scalar
measures associated with posets.

Definition 7. A poset indicator is a function
Iposet : 2Z×Z → R

that associates numerical values to strict partial orders:
∀R ⊆ Z × Z, such that R is a strict partial order,
Iposet(R) ∈ R is the poset indicator of R.

In the context of our preference incorporation framework,
the strict partial orders R referred in the above definition
are obtained by applying a preference model to an approx-
imation set A. Therefore, if u, v ∈ A and uRv, we can say
that solution u preferentially dominates solution v.

2.3.1 Selectivity indicators
We are interested in assessing the degree of refinement

introduced by a preference model, by analyzing the strict
posets which it produces. We will refer this property of a
preference model as its selectivity and we introduce the fol-
lowing 3 poset selectivity indicators:

1. The dominance poset indicator
Defined as the number of solutions that are preferen-
tially dominated by at least one other element, divided
by the number of solutions.
∀A ⊆ Z, ∀R ⊆ A×A,
Idominance
poset (R) = |{u ∈ A | ∃v ∈ A, vRu}| / |A|

2. The relation poset indicator
Defined as the number of preferentially domination re-
lations divided by the maximum number of possible
preferentially domination relations.
∀A ⊆ Z, ∀R ⊆ A×A,
Irelation
poset (R) = |{(u, v) ∈ A×A | uRv}| / M ,

where M = |A|∗(|A|−1)
2

.

3. The front poset indicator
Defined as the number of fronts generated by the non-
dominating sorting procedure used by the NSGA al-
gorithms [15] minus 1, divided by the number of solu-
tions.
∀A ⊆ Z, ∀R ⊆ A×A,
I front
poset(R) = (number-of-fronts −1) / |A|.

Intuitively, we can define the selectivity Iselpref of a prefer-
ence model P with respect to a poset selectivity indicator
Iselposet as the average poset selectivity value over the set of
all non-dominated subsets of Z. However, such a definition
is not mathematically rigorous and, in the general case, it is
also not a reliable measure. We define instead a procedure
for estimating the selectivity of a preference model, which is
appropriate for our preference incorporation framework.

The selectivity of a preference model is considered a re-
liable indicator only if the poset selectivity values consid-
ered for computing its value have low variance. For the
three poset selectivity indicators introduced above, our ex-
periments show that their values are affected by the size
of the approximation sets considered. However, these val-
ues have low variance for approximation sets of the same

size. Therefore, the estimation procedure presented in Al-
gorithm 1 provides a reliable measure for the selectivity of a
preference model, for a given approximation set size. Choos-
ing the size to be used in estimating the selectivity of a
preference model is usually straightforward, because most
MOEA use a fixed population size during their evolution. If
this is not the case, a value close to the maximum population
size should be chosen.

Algorithm 1 Estimate the selectivity of a preference model

procedure computeSelectivity(P, Isel
poset, N, S)

generate N approximations of the Pareto front,
each set having the cardinality S

sum ← 0
for each approximation set A do

sum ← sum+ Isel
poset(P(A))

end for
selectivity ← sum/N

end procedure

2.3.2 Inconsistency indicators
In many cases, non-consistent preferences are unavoid-

able, although they lead to the undesirable rank reversal
phenomenon. This means that the preference for a solution
over another is context dependent, that is, it is affected by
the other solutions present in the candidate set. We consider
that a few occurrences of this phenomenon are acceptable,
but we discourage the incorporation of preference models
with a high rate of rank reversals, because they have a rather
chaotic character.

In order to measure the degree of inconsistency exhibited
by a preference model, we introduce a class of preference
indicators called inconsistency indicators. As in the case of
selectivity indicators, we offer a procedure for estimating the
value of an inconsistency indicator for a given approximation
set size. This procedure makes use of a discrepancy operator
δ : 2Z×Z × 2Z×Z → [0, 1]. For two strict posets R and Q on
a set A, δ(R,Q) gives the discrepancy between these posets.

Various discrepancy operators can be defined. A simple
one, based on the number of differences between the com-
pared posets is presented below:
δdiff(R,Q) = |{(u, v) ∈ A×A | uRv 6= uQv}| / (|A| ∗ (|A| − 1))

Given an approximation set A and a discrepancy operator
δ, the poset inconsistency indicator is defined as:
I inconsist
poset (A, δ) = (

∑
z∈A δ(P(A) �(A\{z}),P(A\{z}))) / |A|

The symbol � in the above equation denotes the restriction
of a binary relation: given a poset R on a set A and a subset
B ⊂ A, R �B is the restriction of R to the subset B.

The Algorithm 1 can be reused to estimate the inconsis-
tency indicator of a preference model, by replacing the Isel

poset

with the I inconsist
poset .

3. THE PREFERANTO NOTATION
Current approaches of incorporating decision maker pref-

erences into MOEA are constrained to a particular formula-
tion of preferences [12]. The method of dealing with the par-
ticular preference scheme is perceived as part of the search
methodology, although, in many cases, the search algorithm
is independent of the preference scheme used and could be
adapted straightforwardly to work with any preference model.

The theoretical framework introduced in the previous sec-
tion treats the preference model as a parameter of the op-
timization problem. This view fosters an approach that
clearly separates the search-related aspects from those con-
cerning the handling of some particular preference scheme,
thus allowing algorithm designers to concentrate on the core
of their work. This is in line with recent efforts to sep-
arate the algorithm-specific part of an optimizer from the
application-specific part (see, for example, the PISA frame-
work [3]).

Since the preference model is treated as a parameter of the
optimization problem, it would be useful to have a standard
way to specify it. The benefit of a unified way of express-
ing preferences has been recognized by Purshouse et al. [12]
and a first step in this direction has been made by Wang et
al. [17]. In this section, we propose a specification language
called Preferanto, which allows describing a large variety
of preference models using a simple but powerful notation.
Preferanto can be easily integrated into existing multiobjec-
tive test problem toolkits in order to provide multiobjective
problems with preferences. Therefore, Preferanto is a useful
companion tool to our theoretical framework, which allows
experimenting with various preference models and incorpo-
ration schemes.

3.1 Notation
We introduce the Preferanto notation gradually, starting

with a preference model using the lexicographic approach.
In this approach, the objectives are ranked by their im-
portance. When comparing two solutions sol1 and sol2,
their objectives are compared in the order of their ranks.
If, for the first objective at which their values differ, sol1
is better than sol2, then sol1 preferentially dominates sol2
(sol1 ≺· sol2).

Let us consider a MOP with the objectives z1, z2 and z3,
which are ranked in the order: z3, z1, z2. Preferanto is a
rule based specification language, which requires each rule to
be written on a separate line, in the order of their priorities.
Our simple preference model will therefore consist of 3 rules,
expressed in the Preferanto notation as follows:

preferences {

z3;

z1;

z2;

}

A Preferanto rule may involve several objectives, com-
bined in a mathematical expression. This way, a weighted
sum preference model can be expressed using a single rule,
containing the aggregation formula. A weighted sum pref-
erential model with the weights 0.1, 0.2 and 0.3 can be rep-
resented as:

preferences {

0.1 · z1 + 0.2 · z2 + 0.3 · z3;

}

Moreover, a Preferanto rule is not restricted to a single
mathematical expression. Instead, it can contain a tuple of
such expressions, as in the following specification:

preferences {

< z1 + 0.5 · z2, z3 >;
< z2, z3 + 0.7 · z1, z1 · z2 >;

}

In the above example, the comparison of two solutions sol1
and sol2 starts with the first rule, which implies computing

the values of z1+0.5·z2 and z3 for both solutions. If, for both
expressions the values of sol1 are better than the ones of sol2,
then sol1 preferentially dominates sol2. Conversely, if for
both expressions the values of sol2 are better than the ones
of sol1, then sol2 preferentially dominates sol1. Otherwise,
the second rule is considered in an analogous way.

User preferences such as those considered in the Guided
Multi-Objective Evolutionary Algorithm (G-MOEA) [5] can
be easily expressed in Preferanto by using a single rule spec-
ification with a tuple with two elements:

preferences {

< z1 + a12 · z2, a21 · z1 + z2 >;
}

A Preferanto rule having a single mathematical expression
can be seen as a rule with a tuple that contains only one
element. Therefore, all Preferanto rules involve tuples. The
angle brackets are optional for tuples with only one element.

A Preferanto rule can also have attached a condition. The
effect of the condition is that the rule is taken into consid-
eration only if the condition evaluates to true. This allows
expressing the fact that some rules become important only in
a given context. Let us consider a hypothetical e-commerce
company confronted with a multiobjective problem involv-
ing shipping goods to its customers. Two objectives are
relevant for the company in choosing the best shipping al-
ternative for a product: the shipping cost and the delivery
time. The company sees the shipping cost as the most im-
portant objective. However, the company has to pay a sub-
stantial penalty if the good is not delivered within 7 days.
Therefore, the delivery time becomes the most important
objective, if one of the solutions compared has a delivery
time greater than 7 days.

In order to express conditions as the one needed in the
above scenario, Preferanto makes use of three preferential
operators, as seen in Table 1. The preferential operators

Table 1: Preference operators
Preference operator Meaning

AT LEAST ONE(cond) cond(sol1) OR cond(sol2)
EXACTLY ONE(cond) cond(sol1) XOR cond(sol2)

ALL(cond) cond(sol1) AND cond(sol2)

take as argument a boolean formula, which usually involves
one or many objectives. The formula is evaluated twice, once
for each of the solutions to be compared. The two resulting
boolean values are passed as arguments to the boolean oper-
ator (OR, XOR, or AND) associated with the given prefer-
ence operator, in order to decide whether the corresponding
rule should be taken into consideration or skipped.

In the e-commerce company scenario discussed above, the
delivery time becomes the most important objective only if
exactly one of the two solutions compared has a delivery time
greater than 7 days. If both solutions have lower delivery
times, there is no penalty. If both have greater delivery
times, the penalty must be paid no matter which solution
is chosen. Therefore, the preferences for this scenario can
be expressed using the EXACTLY ONE operator as shown
below:

preferences {

[EXACTLY_ONE(deliveryTime > 7)] deliveryTime;

cost;

deliveryTime;

}

As seen above, the condition attached to a rule is writ-
ten in brackets. It is allowed to construct conditions that
combine several preferential operators, as in the following
example involving the quality of service of a network:

preferences {

[AT_LEAST_ONE(availability < 0.98) &

ALL(cost < 5)] availability:high;

<cost, responseTime>;

}

For convenience, Preferanto also defines two direction opera-
tors: low and high. In the example above, the high operator
is used to indicate that availability is a maximization objec-
tive. The low operator is default and can be omitted, but
using it to specify preferences that combine minimization
and maximization objectives improves readability.

3.2 Transforming a Preferanto specification into
a preference model

Our goal in this subsection is to devise a general procedure
for converting a Preferanto specification into a preference
model. Taking into account the definition of a preference
model, this goal can be reformulated as devising a general
procedure such that: for any Preferanto specification and
any population A, the procedure constructs a strict partial
order on A, which is in accordance with the Preferanto spec-
ification.

We start by describing an algorithm for pairwise compar-
isons based on a Preferanto specification (Algorithm 2).

Algorithm 2 Pairwise comparison of two solutions

function pairwiseCompare(sol1, sol2, preferences)
for each rule r ∈ preferences do

if condr is null OR condr(sol1, sol2) = true then
result ← compare(tupler(sol1), tupler(sol2))
if result 6= 0 then return result
end if

end if
end for
return 0

end function

The pairwise comparison is implemented as a function re-
turning −1 if sol1 is preferred to sol2, 1 if sol2 is preferred
to sol1 and 0 if there is no preference relation between the
two solutions. The pairwiseCompare function processes the
rules in the order of their priorities. If the current rule has
no condition or its condition evaluates to true, the tuples
corresponding to sol1 and sol2 for this rule are compared
using the function compare. This function returns −1 if all
elements in the tuple of sol1 have better values than the
elements in the tuple of sol2, 1 if all elements in the tuple
of sol2 have better values than the elements in the tuple of
sol1, and 0 otherwise. If compare returns a non-zero value,
this value is used as the return value of pairwiseCompare.
If the tuple comparisons performed by compare return 0 for
all rules, pairwiseCompare returns 0.

The pairwise comparisons performed by Algorithm 2 im-
pose a binary relation on the set of individuals in a popula-
tion A. In what follows, such a relation will be referred as
the pairwise comparison relation on A, denoted PCRA. It
can be easily proved that in the case of a Preferanto spec-
ification having only unconditional rules, PCRA is a strict
partial order, ∀A. Therefore, a Preferanto specification hav-

ing only unconditional rules can be transformed into a pref-
erence model by using its pairwise comparison relations as
follows: ∀A,P(A) = PCRA.

For a Preferanto specification having at least one condi-
tional rule, PCRA is in general not transitive and therefore
it is not a strict partial order. We exemplify this by consid-
ering the following Preferanto specification:

preferences {

[ALL(z1 < 0.5)] z1;

z2;

}

We consider a set A containing three solutions (sol1, sol2,
sol3), with the objective values given in Table 2.

Table 2: Objective values for a set of solutions A
leading to an intransitive PCRA

Objective sol1 sol2 sol3
z1 0.2 0.4 0.6
z2 0.7 0.3 0.5

The PCR for these values and the above Preferanto spec-
ification includes the following intransitive preferences:
sol1 ≺· sol2, sol2 ≺· sol3, sol3 ≺· sol1.

Since PCR is not transitive in general, another approach
has to be taken in order to transform a Preferanto specifica-
tion having conditional rules into a preference model. This
approach will be discussed in the remaining of this subsec-
tion.

For any Preferanto specification having conditional rules
and any approximation set A, we need to construct a strict
partial order on A. If A has n solutions, any relation on
A can be represented by a matrix R with n × n elements.
Therefore, our goal is to devise a function getPoset, which
takes as arguments an approximation set A and a prefer-
ence specification, and returns a matrix R representing the
strict partial order induced on A. The matrix R used in our
approach stores not only information about the preference
relation between solutions, but also about the preference
rule that has been decisive in establishing this relationship:

Rij = r, iff soli ≺· solj due to the rule r.
Rij = −r, iff solj ≺· soli due to the rule r.

In order to ensure that at each step the matrix R corre-
sponds to a strict partial order, all changes to R will be made
through the function setTrans presented in Algorithm 3.

The function setTrans returns false if by adding the pref-
erence relation given as argument and taking the transitive
closure, R is no longer a partial order (for example, because
the newly added preference relation has produced a cycle).

The basic idea for implementing the getPoset function is
to iterate through the preference rules and at each step to
create a list with the candidate preference relations induced
by the current rule. Then, the preference relations from
this list will be added sequentially to R using the setTrans

function, until all preference relations have been added or a
preference relation that would break the strict partial order
has been found. After founding a preference rule that breaks
the partial order, this preference relation and all the remain-
ing ones in the list will be skipped and the next preference
rule will be considered.

If used in the above form, the outcome of getPoset would
depend on the order in which the preference relations have

Algorithm 3 Adding a preference relation to R and ensur-
ing that R remains a strict partial order

function setTrans(R, i, j, r)
if Rij 6= 0 then

if Rij = r then
return true

else
return false

end if
end if
Rij ← r
Rji ← −r
R ← transitive closure of R
if R is not a strict partial order then

return false
else

return true
end if

end function

been added to the current list, that is, on the order in which
the pairwise comparisons have been performed. Since this
is not admissible, we need a method of sorting the list of
candidate preference relations. To this end, we store ad-
ditional information in the list of candidate preference re-
lations, in the form of an array of differences between the
expressions defining each element in the tuple of the cur-
rent rule. Specifically, let us consider that the current rule
has a tuple < expr1, expr2, ..., exprm >. During the pair
comparison of two solutions soli and solj , we create an m-
dimensional array diffs, such that:

diffs[k] = exprk(soli) − exprk(solj),∀k = 1..m The
elements of the list of candidate preference relations will
be data structures of the type PrefRel, which contains the
following fields: (from, to, diffs). The field from gives the
index of the dominating solution, the field to gives the index
of the dominated solution and the field diffs is the array
mentioned before. The list of candidate preference relations
can now be sorted lexicographically based on the values in
the diffs arrays.

The pseudocode of the getPoset function is presented in
Algorithm 4 and the pseudocode of the getCandidatePref-

erenceRelations function is presented in Algorithm 5.
In general, the preference models constructed using the

function getPoset are not consistent, that is, they are af-
fected by the rank reversal phenomenon. Preferanto is thus
a powerful notation, capable to express both consistent pref-
erence models (by using only unconditional rules) and pref-
erence models that violate the independence of irrelevant
alternatives (by including at least one conditional rule).

4. CASE STUDY
In order to illustrate the usefulness of our framework, we

devise an experiment for assessing the impact of incorpo-
rating different preference models into an NSGA-II algo-
rithm [8]. NSGA-II uses a nondominated sorting algorithm
in order to construct a series of fronts. Each individual in the
front i is dominated by all individuals in any front p < i and
dominates all individuals in any front q > i. No domination
relation exists between individuals in the same front. The
fitness of an individual is given by the front on which it re-

Algorithm 4 Obtaining a strict poset for A in accordance
with the Preferanto preferences

function getPoset(A, preferences)
initialize R
for each rule r ∈ preferences do

list ← getCandidatePreferenceRelations(R, r)
sort list lexicographically based on the diffs field
Q ← R
lastDiffs ← null
for each prefRel ∈ list do

if lastDiffs 6= null AND lastDiffs 6= diffs then
R ← Q

end if
ok ← setTrans(Q, prefRelfrom, prefRelto, r)
if ok = false then

Skip the remaining elements in list
Continue with the next rule

end if
end for

end for
return R

end function

sides. The NSGA-II algorithm uses the Pareto dominance in
order to construct the fitness fronts. In order to incorporate
user preferences, we replace the Pareto dominance with a
dominance relation that chains Pareto dominance and pref-
erential dominance:
∀A,∀u, v ∈ A, u dominates v iff u ≺ v or (v ⊀ u and u≺

A
· v).

In what follows, we will use the acronym NSGAP (NSGA
with preferences) to refer to our NSGA-II algorithm en-
hanced with preference information. In order to implement
the NSGAP algorithm, we have used the MOEA Framework
(http://www.moeaframework.org/). The source code of our
implementation is freely available at https://github.com/

preferanto/preferanto.
Our goal is to study how preference models with different

selectivities affect the performance of the NSGAP relative to
the NSGA-II. In all experiments we use the dominance se-
lectivity indicator and a population size of 100. The problem
considered is DTLZ2 [9], which is scalable to any number of
decision variables and to any number of objectives. For both
algorithms we have considered all DTLZ2 problems with the
number of objectives between 2 and 10 and we have used
as termination condition a number of 5000 function evalua-
tions. The number of decision variables has been set as 9 +
the number of objectives.

Our first step is to produce for each number of objectives
sets of preference models with the following selectivities: 0.1,
0.2, ..., 0.9. By using a simple genetic algorithm that gen-
erates preference models and evaluates their selectivity, we
have produced for each selectivity in the considered range a
set of 10 different preferential models. The preference mod-
els used as individuals by the genetic algorithm have been
obtained by generating Preferanto notations with only un-
conditional rules. Each rule is a tuple with a variable number
of elements. Each element in a tuple is a weighted sum of
a variable number of objectives. The genetic algorithm has
therefore to solve a single objective optimization problem,
where the objective is given by the desired selectivity and
the decision variables are the parameters of the Preferanto

Algorithm 5 Creating the list of candidate preference re-
lations

function getCandidatePreferenceRelations(R, r)
initialize list

for i← 1, n− 1 do
for j ← i+ 1, n do

diffs ← null
if condr is null OR condr(soli, solj)=true then

diffs ← tupler(soli)− tupler(solj)
if all elements of diffs are negative then

list ← list + PrefRel(i, j, -diffs))
end if
if all elements of diffs are positive then

list ← list + PrefRel(j, i, diffs))
end if

end if
end for

end for
return R

end function

notations: the number of rules, the number of elements in
a tuple, the number and weights of the terms in an element
of a tuple.

In a second step, we have generated and stored reference
sets for both NSGA-II and NSGAP. For each number of
objectives we have produced 10 approximation sets using
the NSGA-II algorithm. For each number of objectives, for
each selectivity and for each of their 10 associated preference
models, we have generated a reference set using the NSGAP
algorithm.

In the final step we have computed for each objective
count and each selectivity a nondominance ratio indicator,
using the following procedure: For a given preference model
and a given reference set produced by the NSGA-II algo-
rithm, we preferentially compare each solution in the NSGA-
II approximation set with each solution in the NSGAP ap-
proximation set and we count how many of the solutions
in the NSGA-II front are not dominated by any solution
in the NSGAP approximation front. This value is then di-
vided by the number of solutions in the NSGA-II front in
order to obtain the nondominance ratio indicator. Finally,
for each number of objectives and each selectivity we aver-
age the nondominance ratio indicators computed for their
corresponding 10 different preference models.

In the absence of preference information, which corre-
sponds to a selectivity with value 0, all solutions are prefer-
entially nondominated, and the nondominance ratio indica-
tor has the value 1.

Figure 1 shows how the nondominance ratio indicator is
affected by the selectivity for 2, 3 and 10 objectives. It
can be observed that the impact of incorporating user pref-
erences becomes more significant when the number of ob-
jectives increases. For 10 objectives, even a small value of
selectivity such as 0.1 leads to an abrupt fall of the non-
dominance ratio. This means that even when preference
information is scarce, the incorporation of this information
in MOEA may lead to a dramatic performance boost.

5. CONCLUSIONS
We have introduced a framework for the study of user

preference incorporation in MOEA and a preference speci-

Figure 1: Nondominance ratio indicator after 5000
function evaluations.

fication notation that allows expressing complex preference
models. The case study shows that the selectivity indicators
defined by our framework are reliable and useful measures
for characterizing preference models.

We have devised a method of transforming a Preferanto
specification into a preference model. For specifications con-
taining only unconditional rules, the method produces a con-
sistent preference model, while for specifications that con-
tain at least one conditional rule, the resulting preference
model may be affected by the rank reversal phenomenon.

Incorporating non-consistent preferences and assessing the
performance of the algorithms using such preferences are
tasks that pose a series of challenges, due to the rank reversal
problem. Further research has to be done in order to analyze
different characteristics of non-consistent preference models,
such as the impact of set size and selectivity on the rate of
rank reversals and how these rank reversals are distributed
among the most preferred and least preferred solutions.

Future research directions also include: devising more so-
phisticated preference indicators; developing faster methods
of estimating the value of a preference indicator (for exam-
ple, based on the Preferanto specification of a preference
model); finding methods to determine whether a Preferanto
specification with conditional rules is affected by the rank
reversal phenomenon.

6. REFERENCES
[1] K. J. Arrow. Social Choice and Individual Values.

John Wiley and Sons, New York, NY, 1951.

[2] J. Bader and E. Zitzler. HypE: An Algorithm for Fast
Hypervolume-Based Many-Objective Optimization.
Evolutionary Computation, 19(1):45–76, Spring, 2011.

[3] S. Bleuler, M. Laumanns, L. Thiele, and E. Zitzler.
PISA—A Platform and Programming Language

Independent Interface for Search Algorithms. In EMO
2003, pages 494–508, Faro, Portugal, 2003. Springer.
LNCS. Volume 2632.

[4] J. Branke and K. Deb. Integrating user preferences
into evolutionary multi-objective optimization. In
Y. Jin, editor, Knowledge Incorporation in
Evolutionary Computation, pages 461–478. Springer,
October 2004.

[5] J. Branke, T. Kaußler, and H. Schmeck. Guidance in
evolutionary multi-objective optimization. Advances in
Engineering Software, 32:499–507, 2001.

[6] C. A. C. Coello. Handling preferences in evolutionary
multiobjective optimization: a survey. In Evolutionary
Computation, 2000. Proceedings of the 2000 Congress
on, volume 1, 2000.

[7] C. A. C. Coello, G. B. Lamont, and D. A. V.
Veldhuizen. Evolutionary Algorithms for Solving
Multi-Objective Problems (Genetic and Evolutionary
Computation). Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2006.

[8] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A
fast and elitist multiobjective genetic algorithm:
NSGA-II. IEEE Transactions on Evolutionary
Computation, 6:182–197, 2002.

[9] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler.
Scalable Test Problems for Evolutionary
Multi-Objective Optimization. Technical report,
Computer Engineering and Networks Laboratory
(TIK), Swiss Federal Institute of Technology (ETH
Zurich), 2001.

[10] J. Horn. Handbook of Evolutionary Computation,
chapter Multicriterion decision making. IOP Press,
Oxford, 1997.

[11] R. Purshouse and P. Fleming. Evolutionary
many-objective optimisation: An exploratory analysis.
In IEEE Congress on Evolutionary Computation,
CEC’03, volume 3, pages 2066–2073, 2003.

[12] R. C. Purshouse, K. Deb, M. M. Mansor,
S. Mostaghim, and R. Wang. A review of hybrid
evolutionary multiple criteria decision making
methods. COIN Report, (2014005), January 2014.

[13] L. Rachmawati and D. Srinivasan. Preference
incorporation in multi-objective evolutionary
algorithms: A survey. In IEEE Congress on
Evolutionary Computation (CEC 2006), pages
962–968, Vancouver, BC, 2006.

[14] T. L. Saaty and L. G. Vargas. The legitimacy of rank
reversal. Omega, 12(5):513–516, 1984.

[15] N. Srinivas and K. Deb. Multiobjective optimization
using nondominated sorting in genetic algorithms.
Evolutionary Computation, 2(3):221–248, 1994.

[16] A. Tversky and I. Simonson. Context-Dependent
preferences. Manage Sci Manage Sci,
39(10):1179–1189, 1993.

[17] R. Wang, R. C. Purshouse, and P. J. Fleming.
“Whatever Works Best for You”- A New Method for a
Priori and Progressive Multi-objective Optimisation.
In EMO 2013, pages 337–351. Springer. LNCS Vol.
7811, Sheffield, UK, 2013.

[18] Y.-M. Wang and Y. Luo. On rank reversal in decision
analysis. Mathematical and Computer Modelling,
49(5-6):1221–1229, 2009.

